Global attractor for Navier–Stokes equations in cylindrical domains

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Attractor for Navier – Stokes Equations in Cylindrical Domains

Global and regular solutions of the Navier–Stokes system in cylindrical domains have already been obtained under the assumption of smallness of (1) the derivative of the velocity field with respect to the variable along the axis of the cylinder, (2) the derivative of force field with respect to the variable along the axis of the cylinder and (3) the projection of the force field on the axis of ...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Global Attractor for Damped Wave Equations with Nonlinear Memory

Let Ω ⊂ R be a bounded domain with a smooth boundary. We consider the longtime dynamics of a class of damped wave equations with a nonlinear memory term

متن کامل

A study on the global regularity for a model of the 3D axisymmetric NavierStokes equations

We investigates the global regularity issue concerning a model equation proposed by Hou and Lei [3] to understand the stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier-Stokes and Euler equations. Two major results are obtained. The first one establishes the global regularity of a generalized version of their model with a fractional Laplacian when the fractional power sati...

متن کامل

Regularity of the global attractor for semilinear damped wave equations

utt + 2ηA 1 2 ut + aut + Au = f(u) in H1 0 (Ω)×L2(Ω), where Ω is a bounded smooth domain in R3. For dissipative nonlinearity f ∈ C2(R,R) satisfying |f ′′(s)| ≤ c(1 + |s|) with some c > 0, we prove that the family of attractors {Aη , η ≥ 0} is upper semicontinuous at η = 0 in H1+s(Ω)×Hs(Ω) for any s ∈ (0, 1). For dissipative f ∈ C3(R,R) satisfying lim|s|→∞ f ′′(s) s = 0 we prove that the attract...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicationes Mathematicae

سال: 2009

ISSN: 1233-7234,1730-6280

DOI: 10.4064/am36-2-6